10.4 | Cancer and the Cell Cycle By the end of this section, you will be able to do the following: - · Describe how cancer is caused by uncontrolled cell growth - · Understand how proto-oncogenes are normal cell genes that, when mutated, become oncogenes - Describe how tumor suppressors function - · Explain how mutant tumor suppressors cause cancer Cancer comprises many different diseases caused by a common mechanism: uncontrolled cell growth. Despite the redundancy and overlapping levels of cell-cycle control, errors do occur. One of the critical processes monitored by the cell-cycle checkpoint surveillance mechanism is the proper replication of DNA during the S phase. Even when all of the cell-cycle controls are fully functional, a small percentage of replication errors (mutations) will be passed on to the daughter cells. If changes to the DNA nucleotide sequence occur within a coding portion of a gene and are not corrected, a gene mutation results. All cancers start when a gene mutation gives rise to a faulty protein that plays a key role in cell reproduction. The change in the cell that results from the malformed protein may be minor: perhaps a slight delay in the binding of Cdk to cyclin or an Rb protein that detaches from its target DNA while still phosphorylated. Even minor mistakes, however, may allow subsequent mistakes to occur more readily. Over and over, small uncorrected errors are passed from the parent cell to the daughter cells and amplified as each generation produces more non-functional proteins from uncorrected DNA damage. Eventually, the pace of the cell cycle speeds up as the effectiveness of the control and repair mechanisms decreases. Uncontrolled growth of the mutated cells outpaces the growth of normal cells in the area, and a tumor ("-oma") can result. #### **Proto-oncogenes** The genes that code for the positive cell-cycle regulators are called **proto-oncogenes**. Proto-oncogenes are normal genes that, when mutated in certain ways, become **oncogenes**—genes that cause a cell to become cancerous. Consider what might happen to the cell cycle in a cell with a recently acquired oncogene. In most instances, the alteration of the DNA sequence will result in a less functional (or non-functional) protein. The result is detrimental to the cell and will likely prevent the cell from completing the cell cycle; however, the organism is not harmed because the mutation will not be carried forward. If a cell cannot reproduce, the mutation is not propagated and the damage is minimal. Occasionally, however, a gene mutation causes a change that increases the activity of a positive regulator. For example, a mutation that allows Cdk to be activated without being partnered with cyclin could push the cell cycle past a checkpoint before all of the required conditions are met. If the resulting daughter cells are too damaged to undergo further cell divisions, the mutation would not be propagated and no harm would come to the organism. However, if the atypical daughter cells are able to undergo further cell divisions, subsequent generations of cells may accumulate even more mutations, some possibly in additional genes that regulate the cell cycle. The Cdk gene in the above example is only one of many genes that are considered proto-oncogenes. In addition to the cell-cycle regulatory proteins, any protein that influences the cycle can be altered in such a way as to override cell-cycle checkpoints. An oncogene is any gene that, when altered, leads to an increase in the rate of cell-cycle progression. ### **Tumor Suppressor Genes** Like proto-oncogenes, many of the negative cell-cycle regulatory proteins were discovered in cells that had become cancerous. **Tumor suppressor genes** are segments of DNA that code for negative regulator proteins, the type of regulators that, when activated, can prevent the cell from undergoing uncontrolled division. The collective function of the best-understood tumor suppressor gene proteins, Rb, p53, and p21, is to put up a roadblock to cell-cycle progression until certain events are completed. A cell that carries a mutated form of a negative regulator might not be able to halt the cell cycle if there is a problem. Tumor suppressors are similar to brakes in a vehicle: Malfunctioning brakes can contribute to a car crash! Mutated p53 genes have been identified in more than 50 percent of all human tumor cells. This discovery is not surprising in light of the multiple roles that the p53 protein plays at the G_1 checkpoint. A cell with a faulty p53 may fail to detect errors present in the genomic DNA (Figure 10.14). Even if a partially functional p53 does identify the mutations, it may no longer be able to signal the necessary DNA repair enzymes. Either way, damaged DNA will remain uncorrected. At this point, a functional p53 will deem the cell unsalvageable and trigger programmed cell death (apoptosis). The damaged version of p53 found in cancer cells, however, cannot trigger apoptosis. # visual CONNECTION **Figure 10.14** The role of normal p53 is to monitor DNA and the supply of oxygen (hypoxia is a condition of reduced oxygen supply). If damage is detected, p53 triggers repair mechanisms. If repairs are unsuccessful, p53 signals apoptosis. A cell with an abnormal p53 protein cannot repair damaged DNA and thus cannot signal apoptosis. Cells with abnormal p53 can become cancerous. (credit: modification of work by Thierry Soussi) Human papillomavirus can cause cervical cancer. The virus encodes E6, a protein that binds p53. Based on this fact and what you know about p53, what effect do you think E6 binding has on p53 activity? - a. E6 activates p53 - b. E6 inactivates p53 - c. E6 mutates p53 - d. E6 binding marks p53 for degradation The loss of p53 function has other repercussions for the cell cycle. Mutated p53 might lose its ability to trigger p21 production. Without adequate levels of p21, there is no effective block on Cdk activation. Essentially, without a fully functional p53, the G_1 checkpoint is severely compromised and the cell proceeds directly from G_1 to S regardless of internal and external conditions. At the completion of this shortened cell cycle, two daughter cells are produced that have inherited the mutated p53 gene. Given the non-optimal conditions under which the parent cell reproduced, it is likely that the daughter cells will have acquired other mutations in addition to the faulty tumor-suppressor gene. Cells such as these daughter cells quickly accumulate both oncogenes and nonfunctional tumor-suppressor genes. Again, the result is tumor growth. Chapter 10 | Cell Reproduction 297 Watch an animation of how cancer results from errors in the cell cycle. (This multimedia resource will open in a browser.) (http://cnx.org/content/m66480/1.3/#eip-id1169995709332) ## 10.5 | Prokaryotic Cell Division By the end of this section, you will be able to do the following: - · Describe the process of binary fission in prokaryotes - Explain how FtsZ and tubulin proteins are examples of homology Prokaryotes, such as bacteria, produce daughter cells by binary fission. For unicellular organisms, cell division is the only method to produce new individuals. In both prokaryotic and eukaryotic cells, the outcome of cell reproduction is a pair of daughter cells that are genetically identical to the parent cell. In unicellular organisms, daughter cells are individuals. To achieve the outcome of cloned offspring, certain steps are essential. The genomic DNA must be replicated and then allocated into the daughter cells; the cytoplasmic contents must also be divided to give both new cells the cellular machinery to sustain life. As we've seen with bacterial cells, the genome consists of a single, circular DNA chromosome; therefore, the process of cell division is simplified. Karyokinesis is unnecessary because there is no true nucleus and thus no need to direct one copy of the multiple chromosomes into each daughter cell. This type of cell division is called **binary (prokaryotic) fission**. ### **Binary Fission** Due to the relative simplicity of the prokaryotes, the cell division process is a less complicated and much more rapid process than cell division in eukaryotes. As a review of the general information on cell division we discussed at the beginning of this chapter, recall that the single, circular DNA chromosome of bacteria occupies a specific location, the nucleoid region, within the cell (Figure 10.2). Although the DNA of the nucleoid is associated with proteins that aid in packaging the molecule into a compact size, there are no histone proteins and thus no nucleosomes in prokaryotes. The packing proteins of bacteria are, however, related to the cohesin and condensin proteins involved in the chromosome compaction of eukaryotes. The bacterial chromosome is attached to the plasma membrane at about the midpoint of the cell. The starting point of replication, the **origin**, is close to the binding site of the chromosome to the plasma membrane (**Figure 10.15**). Replication of the DNA is bidirectional, moving away from the origin on both strands of the loop simultaneously. As the new double strands are formed, each origin point moves away from the cell wall attachment toward the opposite ends of the cell. As the cell elongates, the growing membrane aids in the transport of the chromosomes. After the chromosomes have cleared the midpoint of the elongated cell, cytoplasmic separation begins. The formation of a ring composed of repeating units of a protein called **FtsZ** (short for "filamenting temperature-sensitive mutant Z") directs the partition between the nucleoids. Formation of the FtsZ ring triggers the accumulation of other proteins that work together to recruit new membrane and cell wall materials to the site. A **septum** is formed between the daughter nucleoids, extending gradually from the periphery toward the center of the cell. When the new cell walls are in place, the daughter cells separate.